Sains Malaysiana 55(1)(2026): 143-154
http://doi.org/10.17576/jsm-2026-5501-11
Kesan Kadar Aliran Nitrogen Teknik RF-PECVD terhadap
Morfologi, Sifat Kimia dan Prestasi Penjerapan CO2 Komposit ZSM-5/a-CNx
(Effect of Nitrogen Flow Rate of RF-PECVD
Technique on Morphology, Chemical Properties and CO2 Adsorption
Performance of ZSM-5/a-CNx Composites)
ANIN SOFYA MOHD AKHIRI1,
NURUL IMANINA MOHD AZLAN1, ZALITA ZAINUDDIN1,
TEH LEE PENG2 & ROZIDAWATI AWANG1,*
1Jabatan Fizik Gunaan, Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains
Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
Diserahkan: 30 September 2025/Diterima: 18 Januari
2026
Abstrak
Penyelidikan ini dijalankan untuk mengkaji kesan kadar
aliran gas nitrogen terhadap morfologi, sifat kimia dan prestasi penjerapan CO2 komposit ZSM-5/a-CNx. Kepingan ZSM-5 disediakan melalui teknik tekanan sepaksi,
seterusnya filem nipis a-CNx dimendapkan di atasnya dengan ubahan nisbah kadar
aliran gas CH4:N2 pada 50:30, 50:40, 50:50 dan 50:60 sccm
untuk menghasilkan sampel komposit ZSM-5/a-CNx. Mikrograf FESEM menunjukkan ciri
morfologi ZSM-5 yang berbucu tajam dan berongga masih terpelihara selepas
proses pemadatan, manakala permukaan komposit berubah kepada tekstur yang lebih
homogen akibat pemendapan filem nipis a-CNx. Analisis data BET memperlihatkan
penurunan luas permukaan khusus dan isi padu liang bersaiz mikro akibat penutupan
sebahagian liang akibat proses pemendapan filem nipis a-CNx. Namun begitu, isi padu
liang kumulatif kekal hampir tidak berubah dan menandakan pemendapan filem
nipis berjaya mengekalkan sebahagian besar struktur liang ZSM-5. Analisis data FTIR
mengesahkan penghasilan komposit ZSM-5/a-CNx melalui kehadiran ikatan C-H, C=C,
C=N dan C-N. Analisis data TPD pula menunjukkan kapasiti penjerapan CO2 tertinggi (212.04 cm3/g) oleh sampel komposit ZSM-5/a-CNx yang
disediakan pada kadar aliran N2 30 sccm, iaitu peningkatan sebanyak 12.46% berbanding
ZSM-5 asli. Keputusan kajian ini mendapati bahawa jenis dan konfigurasi
kumpulan berfungsi nitrogen memainkan peranan yang lebih penting berbanding
jumlah kandungan nitrogen secara keseluruhan. Dalam kajian ini, kumpulan
berfungsi C=N didapati berupaya menyediakan tapak bes yang kuat bagi
meningkatkan prestasi penjerapan CO2 secara kimia, sekali gus
menekankan potensi komposit ZSM-5/a-CNx dalam pembangunan bahan penjerap karbon
yang lebih cekap.
Kata kunci: BET; FTIR; TPD;
penangkapan karbon
Abstract
This study was conducted to investigate the effect of
nitrogen flow rate on the morphology, chemical properties, and CO2 adsorption performance of ZSM-5/a-CNx composites. ZSM-5 pellets were prepared
using a uniaxial pressing technique, followed by deposition of a-CNx thin film
by varying the CH4:N2 gas flow ratio at 50:30, 50:40,
50:50, and 50:60 sccm to produce the ZSM-5/a-CNx composite samples. FESEM
micrographs showed that the sharp-edged and porous morphological features of
ZSM-5 were preserved after compaction, while the composite surfaces became more
homogeneous due to the a-CNx thin-film deposition. BET analysis showed a decrease
in specific surface area and micropore volume due to partial pore closure from
the deposition of a-CNx thin film. However, the cumulative pore volume remained
slightly unchanged indicating that the thin film deposition successfully
preserved most of the porous framework of ZSM-5. FTIR data confirmed the
successful deposition of a-CNx thin film through the presence of C-H, C=C, C=N,
and C-N bonds. TPD data demonstrated the highest CO2 adsorption
capacity (212.04 cm3/g) was achieved by the sample prepared at the
lowest nitrogen flow rate (30 sccm), representing a 12.46% increase compared to
pristine ZSM-5. Our findings found that the type and configuration of nitrogen
functional groups play a more critical role than total nitrogen content in
determining surface basicity. In this study, the C=N functionality was found to
be able to provide strong basic sites to enhance CO2 chemisorption
performance, thus emphasizing the potential of the ZSM-5/a-CNx composite in the
development of more efficient CO2 adsorbents.
Keywords: BET; FTIR; TPD;
carbon capture
Rujukan
Abd Aziz, S.A.
& Awang, R. 2020. Komposisi ikatan kimia dan mekanisme pertumbuhan filem
nipis a-CNx oleh teknik rf-PECVD suhu rendah. Sains Malaysiana 49(6):
1461-1470. doi:10.17576/jsm-2020-4906-24
Abd
Aziz, S.A. & Awang, R. 2019. Chemical bonding composition and growth
mechanism of a-CNx thin films by low-temperature rf-PECVD technique. International
Journal of Innovative Science, Engineering & Technology 6: 177-184.
Adelodun, A.A.,
Kim, K.H., Ngila, J.C. & Szulejko, J. 2015. A review on the effect of amination
pretreatment for the selective separation of CO2. Applied Energy 158: 631-642. doi:10.1016/j.apenergy.2015.08.107
Al-Mamoori, A.,
Saed, U.A., Saoud, A.A., Abdul Jabbar, M.F., Jasim, A., Sh Majdi, H., Hanif, A.
& Iacomi, P. 2025. Modification of the zeolite ZSM‑5 adsorbent for CO2 capture. ACS Omega 10(20): 20129-20141. doi:10.1021/acsomega.4c09747
Awang, R.,
Purhanudin, N. & Salman, N.S. 2018. Effect of radio frequency power on
a-CNx film properties and its performance as humidity sensors. Sains Malaysiana 47(11): 2863-2867. doi:10.17576/jsm-2018-4711-29
Aziz, S.A.A.
& Awang, R. 2017. Kesan kuasa frekuensi radio terhadap komposisi ikatan
kimia filem nipis a-CNx sebagai pengesan kelembapan. Sains Malaysiana 46(10): 1951-1958. doi:10.17576/jsm-2017-4610-34
Azman, N.I.,
Awang, R. & Kamal, S.A.A. 2014. Influence of deposition time on the
chemical bonding and composition of amorphous carbon nitride films. AIP
Conference Proceedings 1614: 74-77. doi:10.1063/1.4895174
Bahmanzadegan,
F. & Ghaemi, A. 2024. Modification and functionalization of zeolites to
improve the efficiency of CO2 adsorption: A review. Case Studies
in Chemical and Environmental Engineering 9: 100564.
doi:10.1016/j.cscee.2023.100564
Bakare, I.A.,
Muraza, O., Sanhoob, M.A., Miyake, K., Hirota, Y., Yamani, Z.H. &
Nishiyama, N. 2018. Dimethyl ether-to-olefins over aluminum rich ZSM-5: The
role of Ca and La as modifiers. Fuels 211: 18-26. doi:10.1016/j.fuel.2017.08.117
Boer, D.G.,
Asgar Pour, Z., Poli, S., Langerak, J., Bakker, B. & Pescarmona, P.P. 2023.
ZSM-5/Silicalite-1 core-shell beads as CO2 adsorbents with increased
hydrophobicity. Materials Today Chemistry 32: 101621.
doi:10.1016/j.mtchem.2023.101621
Chen, D., Wang,
K., Yuan, Z., Lin, Z., Zhang, M., Li, Y., Tang, J., Liang, Z., Li, Y., Chen,
L., Li, L., Huang, X., Pan, S., Zhu, Z., Hong, Z. & He, X. 2023. Boosting
membranes for CO2 capture toward industrial decarbonization. Carbon
Capture Science and Technology 7: 100117. doi:10.1016/j.ccst.2023.100117
Chen, Y., Wu,
J., Wang, X., Liu, M. & Liu, Y. 2022. Synthesis, characterization and
application of amine-functionalized hierarchically micro-mesoporous silicon
composites for CO2 capture in flue gas. Molecules 27(11):
3429. doi:10.3390/molecules27113429
Chouat, N.,
Bensafi, B. & Djafri, F. 2022. Enhancement of carbon dioxide adsorption
over alkali-cations borosilicate ZSM-5 zeolite. Silicon 14(13): 8055-8065.
doi:10.1007/s12633-021-01563-w
Dong, Z.B., Lu, Y.F., Gao, K., Shi, L.Q., Sun, J., Xu, N. & Wu, J.D. 2008. Thermal stability of carbon nitride thin films prepared by electron cyclotron resonance plasma assisted pulsed laser deposition. Thin Solid Films 516(23): 8594–8598. Doi:10.1016/j.tsf.2008.06.013
Fernandez, M.I.,
Go, Y.I., Wong, M.L.D. & Früh, W.G. 2024. Malaysia’s energy transition and
readiness towards attaining net zero: Review of the potential, constraints, and
enablers. Renewable Energy Focus 51: 100640.
doi:10.1016/j.ref.2024.100640
Frantz, T.S.,
Ruiz, W.A., Da Rosa, C.A. & Mortola, V.B. 2016. Synthesis of ZSM-5 with
high sodium content for CO2 adsorption. Microporous and
Mesoporous Materials 222: 209-217. doi:10.1016/j.micromeso.2015.10.022
Gallego-Gómez,
F., Farrando-Pérez, J., López, C. & Silvestre-Albero, J. 2020. Micropore filling
and multilayer formation in Stöber spheres upon water adsorption. Journal of
Physical Chemistry C 124(38): 20922-20930. doi:10.1021/acs.jpcc.0c05313
Ge, L., Wei, J.,
Geng, L., Chen, S. & Liao, L. 2022. Amine-bifunctionalized ZSM-5/SBA-16
composite for CO2 adsorption. Journal of Porous Materials 29(1): 19-31. doi:10.1007/s10934-021-01146-5
Jia, L.,
Sugiura, H., Kondo, H., Takeda, K., Ishikawa, K., Oda, O., Sekine, M., Hiramatsu,
M. & Hori, M. 2016. Effects of radical species on structural and electronic
properties of amorphous carbon films deposited by radical-injection
plasma-enhanced chemical vapor deposition. Plasma
Processes and Polymers 13(7): 730-736. doi:10.1002/ppap.201500229
Kalantarifard, A.,
Ghavaminejad, A. & Yang, G.S. 2017. High CO2 adsorption on
improved ZSM-5 zeolite porous structure modified with ethylenediamine and
desorption characteristics with microwave. Journal of Material Cycles and
Waste Management 19(1): 394-405. doi:10.1007/s10163-015-0436-1
Kovacevic, E.,
Strunskus, T., M. Santhosh, N., Zavašnik, J., Unger, W.E.S., Sauvage, T.,
Ammar, M.R., Cvelbar, U. & Berndt, J. 2021. Thermal stability studies of
plasma deposited hydrogenated carbon nitride nanostructures. Carbon 184:
82-90. doi:10.1016/j.carbon.2021.08.008
Kozak, A.O.,
Porada, O.K., Ivashchenko, V.I., Ivashchenko, L.A., Scrynskyy, P.L., Tomila, T.V.
& Manzhara, V.S. 2017. Comparative investigation of Si-C-N Films prepared
by plasma enhanced chemical vapour deposition and magnetron sputtering. Applied
Surface Science 425: 646-653. doi:10.1016/j.apsusc.2017.06.332
Lakhi, K.S.,
Cha, W.S., Joseph, S., Wood, B.J., Aldeyab, S.S., Lawrence, G., Choy, J.H.
& Vinu, A. 2015. Cage type mesoporous carbon nitride with large mesopores
for CO2 capture. Catalysis Today 243(C): 209-217.
doi:10.1016/j.cattod.2014.08.036
Lim, G., Lee, K.B.
& Ham, H.C. 2016. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach. Journal
of Physical Chemistry C 120(15): 8087-8095. doi:10.1021/acs.jpcc.5b12090
Lin, Z., Wei,
J., Geng, L., Mei, D. & Liao, L. 2018. An amine double functionalized
composite strategy for CO2 adsorbent preparation using a ZSM-5/KIT-6
composite as a support. Energy Technology 6(9): 1618-1626. doi:10.1002/ente.201700780
Lin, Z., Wei,
J., Geng, L., Mei, D. & Liao, L. 2017. Composites ZSM-5/KIT-6 synthesized
via assembly modification procedure and mechanical grinding procedure,
respectively, and their application to CO2 adsorption. Water,
Air, and Soil Pollution 228(11): 412. doi:10.1007/s11270-017-3599-7
Liu, Q., Fang,
Y., Miao, C., Liao, Z., Lu, J., Li, J., Wu, X. & Nulahong, A. 2023.
Preparation of ZSM-5 molecular sieve modified by kaolin and its CO2 adsorption performance investigation. Microporous and Mesoporous Materials 360: 112678. doi:10.1016/j.micromeso.2023.112678
Liu, R., Ma, Z.,
Sears, D., Juneau, M., Neidig, M.L. & Poroso, M.D. 2020. Identifying
correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over
Fe-based ZSM-5 catalysts 41: 101290. doi:10.1016/j.jcou.2020.101290
Liu, T., Guo,
Y., Luo, L., Ye, M., Liu, W. & Zhu, T. 2023. Interactive adsorption
mechanism and product distribution of impurity gases on CO2 adsorption over amine-grafted ZSM-5/SBA-16 adsorbent. Fuel 354: 129307.
doi:10.1016/j.fuel.2023.129307
Ma, Y., Qian,
J., Zhu, P., Ding, J., Sun, K., Gou, H., Abirov, R. & Zhang, Q. 2025.
Carbon nanosheets grown via RF-PECVD on graphite films and thermal properties
of graphite film/aluminum composites. Nanomaterials 15(10): 773.
doi:10.3390/nano15100773
Malik, R. &
Tomer, V.K. 2021. State-of-the-art review of morphological advancements in
graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renewable
and Sustainable Energy Reviews 135: 110235. doi:10.1016/j.rser.2020.110235
Mortazavi, N.,
Bahadori, M., Marandi, A., Tangestaninejad, S., Moghadam, M., Mirkhani, V.
& Mohammadpoor-Baltork, I. 2021. Enhancement of CO2 adsorption
on natural zeolite, modified clinoptilolite with cations, amines and ionic
liquids. Sustainable Chemistry and Pharmacy 22: 100495.
doi:10.1016/j.scp.2021.100495
Othman, M.,
Ritikos, R., Khanis, N.H., Rashid, N.M.A., Gani, S.M.A. & Rahman, S.A.
2013. Effect of N2 flow rate on the properties of CNx thin films
prepared by radio frequency plasma enhanced chemical vapor deposition from
ethane and nitrogen. Thin Solid Films 529: 439-443.
doi:10.1016/j.tsf.2012.03.090
Othman, M.,
Ritikos, R., Khanis, N.H., Abdul Rashid, N.M., Abdul Rahman, S., Ab Gani, S.M. &
Muhamad, M.R. 2011. Effects of rf power on the structural properties of carbon
nitride thin films prepared by plasma enhanced chemical vapour deposition. Thin
Solid Films 519(15): 4981-4986. doi:10.1016/j.tsf.2011.01.065
Petrovic, B.,
Gorbounov, M. & Masoudi Soltani, S. 2021. Influence of surface modification
on selective CO2 adsorption: A technical review on mechanisms and
methods. Microporous and Mesoporous Materials 312: 110751.
doi:10.1016/j.micromeso.2020.110751
Radica, F.,
Cassetta, M., Iezzi, G., Pisello, A., Vetere, F., Del Vecchio, A., Cestelli
Guidi, M. & Poe, B.T. 2024. Short-range order and chemical compositions of
glasses along the basaltic-rhyolite sub-alkaline join by Raman and FTIR
spectroscopies. Chemical Geology 648: 121938.
doi:10.1016/j.chemgeo.2024.121938
Refaat, Z., El Saied,
M., Naga, A.O.A., El Shaban, S.A., Hassan, H.B., Shehata, M.R. & Kady, F.Y.E.
2023. Mesoporous carbon nitride supported MgO for enhanced CO2 capture. Environmental Science and Pollution Research 30(18): 53817-53832.
doi:10.1007/s11356-023-26013-5
Rehman, A. &
Park, S.J. 2017. Facile synthesis of nitrogen-enriched microporous carbons
derived from imine and benzimidazole-linked polymeric framework for efficient
CO2 adsorption. Journal of CO2 Utilization 21: 503-512.
doi:10.1016/j.jcou.2017.08.016
Rizzetto, A.,
Piumetti, M., Pirone, R., Sartoretti, E. & Bensaid, S. 2024. Study of
ceria-composite materials for high-temperature CO2 capture and their
ruthenium functionalization for methane production. Catalysis Today 429:
114478. doi:10.1016/j.cattod.2023.114478
Scholes, C.A.
2020. Challenges for CO2 capture by membranes. In Advances in Carbon
Capture, disunting oleh Rahimpour, M.R., Farsi,
M. & Makarem, M.A. Woodhead Publishing. hlm. 357-377.
doi:10.1016/B978-0-12-819657-1.00016-5
Sharma, S. &
Sharma, S.C. 2022. Effect of plasma control parameters on the growth of
nitrogen-doped nanocone-vertical graphene hybrid: Theoretical investigations. Plasma
Chemistry and Plasma Processing 42(2): 413-433.
doi:10.1007/s11090-022-10229-3
Shcherban, N.D.,
Filonenko, S.M., Yaremov, P.S., Skoryk, M., Ilyin, V.G., Aho, A. & Murzin,
D.Y. 2016. Synthesis, structure and adsorption properties of nonstoichiometric
carbon nitride in comparison with nitrogen-containing carbons. Journal of Industrial
and Engineering Chemistry 34: 292-299. doi:10.1016/j.jiec.2015.11.023
Soltani, S.,
Zamaniyan, A., Darian, J.T. & Soltanali, S. 2024. The effect of Si/Al ratio
of ZSM-12 zeolite on its morphology, acidity and crystal size for the catalytic
performance in the HTO process. RSC Advances 14(8): 5380-5389.
doi:10.1039/d3ra08792a
Sukor, N.R.,
Shamsuddin, A.H., Meurah, T. & Mahlia, I. 2020. Techno-economic analysis of
CO2 capture technologies in offshore natural gas field: Implications
to carbon capture and storage in Malaysia. Processes 8(3): 350.
doi:10.3390/pr8030350
Talapaneni,
S.N., Singh, G., Kim, I.Y., AlBahily, K., Al-Muhtaseb, A.H., Karakoti, A.S.,
Tavakkoli, E. & Vinu, A. 2020. Nanostructured carbon nitrides for CO2 capture and conversion. Advanced Materials 32(18): 1904635.
doi:10.1002/adma.201904635
Vorokhta, M.,
Irfan, M., Kusdhany, M. & Švábová, M. 2025. Hierarchically porous carbon
foams coated with carbon nitride: Insights into adsorbents for pre-combustion
and post-combustion CO2 separation 354: 129054.
doi:10.1016/j.seppur.2024.129054
Wahab, M.A., Na,
J., Masud, M.K., Hossain, M.S.A., Alothman, A.A. & Abdala, A. 2021.
Nanoporous carbon nitride with a high content of inbuilt N site for the CO2 capture. Journal of Hazardous Materials 408: 124843.
doi:10.1016/j.jhazmat.2020.124843
Wang, Y., Du,
T., Fang, X., Jia, H., Qiu, Z. & Song, Y. 2019. Synthesis of CO2 -adsorbing ZSM-5 zeolite from rice husk ash via the colloidal pretreatment
method. Materials Chemistry and Physics 232: 284-293.
doi:10.1016/j.matchemphys.2019.04.090
Wu, Y., Guo, Z.,
Wu, H., Zhu, K., Yang, L., Ren, Y., Liu, Y., Wu, X., Zhao, R., Ali Khan, N., M.
Ahmad, N., Younas, M. & Jiang, Z. 2020. Plasticization-and aging-resistant
membranes with venation-like architecture for efficient carbon capture. Journal
of Membrane Science 609: 118215. doi:10.1016/j.memsci.2020.118215
Xu, W., Chen,
B., Jiang, X., Xu, F., Chen, X., Chen, L., Wu, J., Fu, M. & Ye, D. 2020.
Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5:
Acidity/basicity, catalytic activity and reaction mechanism. Journal of
Hazardous Materials 387: 122004. doi:10.1016/j.jhazmat.2019.122004
Yang, H., Yuan,
Y. & Tsang, S. C. E. 2012. Nitrogen-enriched carbonaceous materials with
hierarchical micro-mesopore structures for efficient CO2 capture. Chemical
Engineering Journal 185: 374-379. doi:10.1016/j.cej.2012.01.083
Zhang, Z., Wang,
B., Sun, Q. & Zheng, L. 2014. A novel method for the preparation of CO2 sorption sorbents with high performance. Applied Energy 123: 179-184.
doi:10.1016/j.apenergy.2014.02.012
Zhao, P., Zhang,
G., Yan, H. & Zhao, Y. 2021. The latest development on amine functionalized
solid adsorbents for post-combustion CO2 capture: Analysis review. Chinese
Journal of Chemical Engineering 35: 17-43. doi:10.1016/j.cjche.2020.11.028
*Pengarang untuk surat-menyurat; email: rozida@ukm.edu.my