Sains Malaysiana 55(1)(2026): 143-154

http://doi.org/10.17576/jsm-2026-5501-11

 

Kesan Kadar Aliran Nitrogen Teknik RF-PECVD terhadap Morfologi, Sifat Kimia dan Prestasi Penjerapan CO2 Komposit ZSM-5/a-CNx

(Effect of Nitrogen Flow Rate of RF-PECVD Technique on Morphology, Chemical Properties and CO2 Adsorption Performance of ZSM-5/a-CNx Composites)

 

ANIN SOFYA MOHD AKHIRI1, NURUL IMANINA MOHD AZLAN1, ZALITA ZAINUDDIN1,
TEH LEE PENG2 & ROZIDAWATI AWANG1,*

 

1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 30 September 2025/Diterima: 18 Januari 2026

 

Abstrak

Penyelidikan ini dijalankan untuk mengkaji kesan kadar aliran gas nitrogen terhadap morfologi, sifat kimia dan prestasi penjerapan CO2 komposit ZSM-5/a-CNx. Kepingan ZSM-5 disediakan melalui teknik tekanan sepaksi, seterusnya filem nipis a-CNx dimendapkan di atasnya dengan ubahan nisbah kadar aliran gas CH4:N2 pada 50:30, 50:40, 50:50 dan 50:60 sccm untuk menghasilkan sampel komposit ZSM-5/a-CNx. Mikrograf FESEM menunjukkan ciri morfologi ZSM-5 yang berbucu tajam dan berongga masih terpelihara selepas proses pemadatan, manakala permukaan komposit berubah kepada tekstur yang lebih homogen akibat pemendapan filem nipis a-CNx. Analisis data BET memperlihatkan penurunan luas permukaan khusus dan isi padu liang bersaiz mikro akibat penutupan sebahagian liang akibat proses pemendapan filem nipis a-CNx. Namun begitu, isi padu liang kumulatif kekal hampir tidak berubah dan menandakan pemendapan filem nipis berjaya mengekalkan sebahagian besar struktur liang ZSM-5. Analisis data FTIR mengesahkan penghasilan komposit ZSM-5/a-CNx melalui kehadiran ikatan C-H, C=C, C=N dan C-N. Analisis data TPD pula menunjukkan kapasiti penjerapan CO2 tertinggi (212.04 cm3/g) oleh sampel komposit ZSM-5/a-CNx yang disediakan pada kadar aliran N2 30 sccm, iaitu peningkatan sebanyak 12.46% berbanding ZSM-5 asli. Keputusan kajian ini mendapati bahawa jenis dan konfigurasi kumpulan berfungsi nitrogen memainkan peranan yang lebih penting berbanding jumlah kandungan nitrogen secara keseluruhan. Dalam kajian ini, kumpulan berfungsi C=N didapati berupaya menyediakan tapak bes yang kuat bagi meningkatkan prestasi penjerapan CO2 secara kimia, sekali gus menekankan potensi komposit ZSM-5/a-CNx dalam pembangunan bahan penjerap karbon yang lebih cekap.

Kata kunci: BET; FTIR; TPD; penangkapan karbon

 

Abstract

This study was conducted to investigate the effect of nitrogen flow rate on the morphology, chemical properties, and CO2 adsorption performance of ZSM-5/a-CNx composites. ZSM-5 pellets were prepared using a uniaxial pressing technique, followed by deposition of a-CNx thin film by varying the CH4:N2 gas flow ratio at 50:30, 50:40, 50:50, and 50:60 sccm to produce the ZSM-5/a-CNx composite samples. FESEM micrographs showed that the sharp-edged and porous morphological features of ZSM-5 were preserved after compaction, while the composite surfaces became more homogeneous due to the a-CNx thin-film deposition. BET analysis showed a decrease in specific surface area and micropore volume due to partial pore closure from the deposition of a-CNx thin film. However, the cumulative pore volume remained slightly unchanged indicating that the thin film deposition successfully preserved most of the porous framework of ZSM-5. FTIR data confirmed the successful deposition of a-CNx thin film through the presence of C-H, C=C, C=N, and C-N bonds. TPD data demonstrated the highest CO2 adsorption capacity (212.04 cm3/g) was achieved by the sample prepared at the lowest nitrogen flow rate (30 sccm), representing a 12.46% increase compared to pristine ZSM-5. Our findings found that the type and configuration of nitrogen functional groups play a more critical role than total nitrogen content in determining surface basicity. In this study, the C=N functionality was found to be able to provide strong basic sites to enhance CO2 chemisorption performance, thus emphasizing the potential of the ZSM-5/a-CNx composite in the development of more efficient CO2 adsorbents.

Keywords: BET; FTIR; TPD; carbon capture

 

Rujukan

Abd Aziz, S.A. & Awang, R. 2020. Komposisi ikatan kimia dan mekanisme pertumbuhan filem nipis a-CNx oleh teknik rf-PECVD suhu rendah. Sains Malaysiana 49(6): 1461-1470. doi:10.17576/jsm-2020-4906-24

Abd Aziz, S.A. & Awang, R. 2019. Chemical bonding composition and growth mechanism of a-CNx thin films by low-temperature rf-PECVD technique. International Journal of Innovative Science, Engineering & Technology 6: 177-184.

Adelodun, A.A., Kim, K.H., Ngila, J.C. & Szulejko, J. 2015. A review on the effect of amination pretreatment for the selective separation of CO2. Applied Energy 158: 631-642. doi:10.1016/j.apenergy.2015.08.107

Al-Mamoori, A., Saed, U.A., Saoud, A.A., Abdul Jabbar, M.F., Jasim, A., Sh Majdi, H., Hanif, A. & Iacomi, P. 2025. Modification of the zeolite ZSM‑5 adsorbent for CO2 capture. ACS Omega 10(20): 20129-20141. doi:10.1021/acsomega.4c09747

Awang, R., Purhanudin, N. & Salman, N.S. 2018. Effect of radio frequency power on a-CNx film properties and its performance as humidity sensors. Sains Malaysiana 47(11): 2863-2867. doi:10.17576/jsm-2018-4711-29

Aziz, S.A.A. & Awang, R. 2017. Kesan kuasa frekuensi radio terhadap komposisi ikatan kimia filem nipis a-CNx sebagai pengesan kelembapan. Sains Malaysiana 46(10): 1951-1958. doi:10.17576/jsm-2017-4610-34

Azman, N.I., Awang, R. & Kamal, S.A.A. 2014. Influence of deposition time on the chemical bonding and composition of amorphous carbon nitride films. AIP Conference Proceedings 1614: 74-77. doi:10.1063/1.4895174

Bahmanzadegan, F. & Ghaemi, A. 2024. Modification and functionalization of zeolites to improve the efficiency of CO2 adsorption: A review. Case Studies in Chemical and Environmental Engineering 9: 100564. doi:10.1016/j.cscee.2023.100564

Bakare, I.A., Muraza, O., Sanhoob, M.A., Miyake, K., Hirota, Y., Yamani, Z.H. & Nishiyama, N. 2018. Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers. Fuels 211: 18-26. doi:10.1016/j.fuel.2017.08.117

Boer, D.G., Asgar Pour, Z., Poli, S., Langerak, J., Bakker, B. & Pescarmona, P.P. 2023. ZSM-5/Silicalite-1 core-shell beads as CO2 adsorbents with increased hydrophobicity. Materials Today Chemistry 32: 101621. doi:10.1016/j.mtchem.2023.101621

Chen, D., Wang, K., Yuan, Z., Lin, Z., Zhang, M., Li, Y., Tang, J., Liang, Z., Li, Y., Chen, L., Li, L., Huang, X., Pan, S., Zhu, Z., Hong, Z. & He, X. 2023. Boosting membranes for CO2 capture toward industrial decarbonization. Carbon Capture Science and Technology 7: 100117. doi:10.1016/j.ccst.2023.100117

Chen, Y., Wu, J., Wang, X., Liu, M. & Liu, Y. 2022. Synthesis, characterization and application of amine-functionalized hierarchically micro-mesoporous silicon composites for CO2 capture in flue gas. Molecules 27(11): 3429. doi:10.3390/molecules27113429

Chouat, N., Bensafi, B. & Djafri, F. 2022. Enhancement of carbon dioxide adsorption over alkali-cations borosilicate ZSM-5 zeolite. Silicon 14(13): 8055-8065. doi:10.1007/s12633-021-01563-w

Dong, Z.B., Lu, Y.F., Gao, K., Shi, L.Q., Sun, J., Xu, N. & Wu, J.D. 2008. Thermal stability of carbon nitride thin films prepared by electron cyclotron resonance plasma assisted pulsed laser deposition. Thin Solid Films 516(23): 8594–8598. Doi:10.1016/j.tsf.2008.06.013

Fernandez, M.I., Go, Y.I., Wong, M.L.D. & Früh, W.G. 2024. Malaysia’s energy transition and readiness towards attaining net zero: Review of the potential, constraints, and enablers. Renewable Energy Focus 51: 100640. doi:10.1016/j.ref.2024.100640

Frantz, T.S., Ruiz, W.A., Da Rosa, C.A. & Mortola, V.B. 2016. Synthesis of ZSM-5 with high sodium content for CO2 adsorption. Microporous and Mesoporous Materials 222: 209-217. doi:10.1016/j.micromeso.2015.10.022

Gallego-Gómez, F., Farrando-Pérez, J., López, C. & Silvestre-Albero, J. 2020. Micropore filling and multilayer formation in Stöber spheres upon water adsorption. Journal of Physical Chemistry C 124(38): 20922-20930. doi:10.1021/acs.jpcc.0c05313

Ge, L., Wei, J., Geng, L., Chen, S. & Liao, L. 2022. Amine-bifunctionalized ZSM-5/SBA-16 composite for CO2 adsorption. Journal of Porous Materials 29(1): 19-31. doi:10.1007/s10934-021-01146-5

Jia, L., Sugiura, H., Kondo, H., Takeda, K., Ishikawa, K., Oda, O., Sekine, M., Hiramatsu, M. & Hori, M. 2016. Effects of radical species on structural and electronic properties of amorphous carbon films deposited by radical-injection plasma-enhanced chemical vapor deposition. Plasma Processes and Polymers 13(7): 730-736. doi:10.1002/ppap.201500229

Kalantarifard, A., Ghavaminejad, A. & Yang, G.S. 2017. High CO2 adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristics with microwave. Journal of Material Cycles and Waste Management 19(1): 394-405. doi:10.1007/s10163-015-0436-1

Kovacevic, E., Strunskus, T., M. Santhosh, N., Zavašnik, J., Unger, W.E.S., Sauvage, T., Ammar, M.R., Cvelbar, U. & Berndt, J. 2021. Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures. Carbon 184: 82-90. doi:10.1016/j.carbon.2021.08.008

Kozak, A.O., Porada, O.K., Ivashchenko, V.I., Ivashchenko, L.A., Scrynskyy, P.L., Tomila, T.V. & Manzhara, V.S. 2017. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering. Applied Surface Science 425: 646-653. doi:10.1016/j.apsusc.2017.06.332

Lakhi, K.S., Cha, W.S., Joseph, S., Wood, B.J., Aldeyab, S.S., Lawrence, G., Choy, J.H. & Vinu, A. 2015. Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 243(C): 209-217. doi:10.1016/j.cattod.2014.08.036

Lim, G., Lee, K.B. & Ham, H.C. 2016. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach. Journal of Physical Chemistry C 120(15): 8087-8095. doi:10.1021/acs.jpcc.5b12090

Lin, Z., Wei, J., Geng, L., Mei, D. & Liao, L. 2018. An amine double functionalized composite strategy for CO2 adsorbent preparation using a ZSM-5/KIT-6 composite as a support. Energy Technology 6(9): 1618-1626. doi:10.1002/ente.201700780

Lin, Z., Wei, J., Geng, L., Mei, D. & Liao, L. 2017. Composites ZSM-5/KIT-6 synthesized via assembly modification procedure and mechanical grinding procedure, respectively, and their application to CO2 adsorption. Water, Air, and Soil Pollution 228(11): 412. doi:10.1007/s11270-017-3599-7

Liu, Q., Fang, Y., Miao, C., Liao, Z., Lu, J., Li, J., Wu, X. & Nulahong, A. 2023. Preparation of ZSM-5 molecular sieve modified by kaolin and its CO2 adsorption performance investigation. Microporous and Mesoporous Materials 360: 112678. doi:10.1016/j.micromeso.2023.112678

Liu, R., Ma, Z., Sears, D., Juneau, M., Neidig, M.L. & Poroso, M.D. 2020. Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts 41: 101290. doi:10.1016/j.jcou.2020.101290

Liu, T., Guo, Y., Luo, L., Ye, M., Liu, W. & Zhu, T. 2023. Interactive adsorption mechanism and product distribution of impurity gases on CO2 adsorption over amine-grafted ZSM-5/SBA-16 adsorbent. Fuel 354: 129307. doi:10.1016/j.fuel.2023.129307

Ma, Y., Qian, J., Zhu, P., Ding, J., Sun, K., Gou, H., Abirov, R. & Zhang, Q. 2025. Carbon nanosheets grown via RF-PECVD on graphite films and thermal properties of graphite film/aluminum composites. Nanomaterials 15(10): 773. doi:10.3390/nano15100773

Malik, R. & Tomer, V.K. 2021. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renewable and Sustainable Energy Reviews 135: 110235. doi:10.1016/j.rser.2020.110235

Mortazavi, N., Bahadori, M., Marandi, A., Tangestaninejad, S., Moghadam, M., Mirkhani, V. & Mohammadpoor-Baltork, I. 2021. Enhancement of CO2 adsorption on natural zeolite, modified clinoptilolite with cations, amines and ionic liquids. Sustainable Chemistry and Pharmacy 22: 100495. doi:10.1016/j.scp.2021.100495

Othman, M., Ritikos, R., Khanis, N.H., Rashid, N.M.A., Gani, S.M.A. & Rahman, S.A. 2013. Effect of N2 flow rate on the properties of CNx thin films prepared by radio frequency plasma enhanced chemical vapor deposition from ethane and nitrogen. Thin Solid Films 529: 439-443. doi:10.1016/j.tsf.2012.03.090

Othman, M., Ritikos, R., Khanis, N.H., Abdul Rashid, N.M., Abdul Rahman, S., Ab Gani, S.M. & Muhamad, M.R. 2011. Effects of rf power on the structural properties of carbon nitride thin films prepared by plasma enhanced chemical vapour deposition. Thin Solid Films 519(15): 4981-4986. doi:10.1016/j.tsf.2011.01.065

Petrovic, B., Gorbounov, M. & Masoudi Soltani, S. 2021. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials 312: 110751. doi:10.1016/j.micromeso.2020.110751

Radica, F., Cassetta, M., Iezzi, G., Pisello, A., Vetere, F., Del Vecchio, A., Cestelli Guidi, M. & Poe, B.T. 2024. Short-range order and chemical compositions of glasses along the basaltic-rhyolite sub-alkaline join by Raman and FTIR spectroscopies. Chemical Geology 648: 121938. doi:10.1016/j.chemgeo.2024.121938

Refaat, Z., El Saied, M., Naga, A.O.A., El Shaban, S.A., Hassan, H.B., Shehata, M.R. & Kady, F.Y.E. 2023. Mesoporous carbon nitride supported MgO for enhanced CO2 capture. Environmental Science and Pollution Research 30(18): 53817-53832. doi:10.1007/s11356-023-26013-5

Rehman, A. & Park, S.J. 2017. Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2 adsorption. Journal of CO2 Utilization 21: 503-512. doi:10.1016/j.jcou.2017.08.016

Rizzetto, A., Piumetti, M., Pirone, R., Sartoretti, E. & Bensaid, S. 2024. Study of ceria-composite materials for high-temperature CO2 capture and their ruthenium functionalization for methane production. Catalysis Today 429: 114478. doi:10.1016/j.cattod.2023.114478

Scholes, C.A. 2020. Challenges for CO2 capture by membranes. In Advances in Carbon Capture, disunting oleh Rahimpour, M.R., Farsi, M. & Makarem, M.A. Woodhead Publishing. hlm. 357-377. doi:10.1016/B978-0-12-819657-1.00016-5

Sharma, S. & Sharma, S.C. 2022. Effect of plasma control parameters on the growth of nitrogen-doped nanocone-vertical graphene hybrid: Theoretical investigations. Plasma Chemistry and Plasma Processing 42(2): 413-433. doi:10.1007/s11090-022-10229-3

Shcherban, N.D., Filonenko, S.M., Yaremov, P.S., Skoryk, M., Ilyin, V.G., Aho, A. & Murzin, D.Y. 2016. Synthesis, structure and adsorption properties of nonstoichiometric carbon nitride in comparison with nitrogen-containing carbons. Journal of Industrial and Engineering Chemistry 34: 292-299. doi:10.1016/j.jiec.2015.11.023

Soltani, S., Zamaniyan, A., Darian, J.T. & Soltanali, S. 2024. The effect of Si/Al ratio of ZSM-12 zeolite on its morphology, acidity and crystal size for the catalytic performance in the HTO process. RSC Advances 14(8): 5380-5389. doi:10.1039/d3ra08792a

Sukor, N.R., Shamsuddin, A.H., Meurah, T. & Mahlia, I. 2020. Techno-economic analysis of CO2 capture technologies in offshore natural gas field: Implications to carbon capture and storage in Malaysia. Processes 8(3): 350. doi:10.3390/pr8030350

Talapaneni, S.N., Singh, G., Kim, I.Y., AlBahily, K., Al-Muhtaseb, A.H., Karakoti, A.S., Tavakkoli, E. & Vinu, A. 2020. Nanostructured carbon nitrides for CO2 capture and conversion. Advanced Materials 32(18): 1904635. doi:10.1002/adma.201904635

Vorokhta, M., Irfan, M., Kusdhany, M. & Švábová, M. 2025. Hierarchically porous carbon foams coated with carbon nitride: Insights into adsorbents for pre-combustion and post-combustion CO2 separation 354: 129054. doi:10.1016/j.seppur.2024.129054

Wahab, M.A., Na, J., Masud, M.K., Hossain, M.S.A., Alothman, A.A. & Abdala, A. 2021. Nanoporous carbon nitride with a high content of inbuilt N site for the CO2 capture. Journal of Hazardous Materials 408: 124843. doi:10.1016/j.jhazmat.2020.124843

Wang, Y., Du, T., Fang, X., Jia, H., Qiu, Z. & Song, Y. 2019. Synthesis of CO2 -adsorbing ZSM-5 zeolite from rice husk ash via the colloidal pretreatment method. Materials Chemistry and Physics 232: 284-293. doi:10.1016/j.matchemphys.2019.04.090

Wu, Y., Guo, Z., Wu, H., Zhu, K., Yang, L., Ren, Y., Liu, Y., Wu, X., Zhao, R., Ali Khan, N., M. Ahmad, N., Younas, M. & Jiang, Z. 2020. Plasticization-and aging-resistant membranes with venation-like architecture for efficient carbon capture. Journal of Membrane Science 609: 118215. doi:10.1016/j.memsci.2020.118215

Xu, W., Chen, B., Jiang, X., Xu, F., Chen, X., Chen, L., Wu, J., Fu, M. & Ye, D. 2020. Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5: Acidity/basicity, catalytic activity and reaction mechanism. Journal of Hazardous Materials 387: 122004. doi:10.1016/j.jhazmat.2019.122004

Yang, H., Yuan, Y. & Tsang, S. C. E. 2012. Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chemical Engineering Journal 185: 374-379. doi:10.1016/j.cej.2012.01.083

Zhang, Z., Wang, B., Sun, Q. & Zheng, L. 2014. A novel method for the preparation of CO2 sorption sorbents with high performance. Applied Energy 123: 179-184. doi:10.1016/j.apenergy.2014.02.012

Zhao, P., Zhang, G., Yan, H. & Zhao, Y. 2021. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chinese Journal of Chemical Engineering 35: 17-43. doi:10.1016/j.cjche.2020.11.028

 

*Pengarang untuk surat-menyurat; email: rozida@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya